Eşitsizlikler

Bu bölümde Eşitsizlikler ve Eşitsizlik Sistemleri ile ilgili 23 adet soru bulunmaktadır. Sorularınızı çözdükten sonra düşündüğünüz şıkka tıklayarak doğru yapıp yapmadığınızı kontrol edebilirsiniz. Eğer soruları çözmekte zorlanırsanız; kolay anlaşılır detaylı çözümlere “Çözüm için Tıklayınız” seçeneği ile ulaşabilirsiniz. İyi Çalışmalar…

 

1.SORU

Çözüm için Tıklayınız.


2.SORU

Çözüm için Tıklayınız.

3.SORU

Çözüm için Tıklayınız.

4.SORU

Çözüm için Tıklayınız.

5.SORU

Çözüm için Tıklayınız.

6.SORU

Çözüm için Tıklayınız.

7.SORU

Çözüm için Tıklayınız.

8.SORU

Çözüm için Tıklayınız.

9.SORU

Çözüm için Tıklayınız.

10.SORU

Çözüm için Tıklayınız.

Eğer sorular ya da çözümler konusunda bir problem görür veyahut da bir tavsiye de bulunmak isterseniz; sayfanın en altında yer alan “Yorum Yap” seçeneği ile bunları anlık olarak iletebilirsiniz.

 

Bu içerik www.matematikkolay.net tarafından özel olarak hazırlanmıştır. Kısmen dahi olsa başka platformlarda izinsiz bir şekilde yayınlanamaz, basılamaz. (Sadece öğretmenlerimiz, ders ortamında kullanmak üzere kullanabilirler.)

EŞİTSİZLİKLER VE EŞİTSİZLİK SİSTEMLERİ TESTİ www.matematikkolay.net 1) 2 x 5x 3 x 2 eşitsizliğini sağlayan x tam sayılarının toplamı kaçtır? A) 2 B) 5 C) 9 D) 12 E) 14 ÇÖZÜM: 2 2 2 ( 1).( 5) 2 Eşitsizliğin bir tarafını 0 bırakalım. x 5x 3 x 2 0 x 6x 5 0 olur. x 6x 5 0 denkleminin köklerini bulalım. (x 1)(x 5) 0 Kökler 1 ve 5 tir. x nin katsayısı da pozitif. İşaret tablosunu çizdikte n sonra, en sağ bölge olacak şekilde başlarız. Her kökte işaret değiştiririz. 0’dan küçük olan yerleri istiyoruz. O halde olan bölge, çözüm kümesidir. Eşitlik olmadığı için, kökler dahil değildir. Çözüm Kümesi (1, 5) aralığıdır. Buna göre, x tam sayıları 2, 3 ve 4 olabilir. Toplamları 2 3 4 9 dur. Cevap: C 2) 2 4x 2 8x 2 eşitsizliğinin çözüm kümesi aşağıdakilerden hangisi￾dir? A) B) {0} C) R {1} D) R E) {1} ÇÖZÜM: 2 2 2 2 2 4x 8x 4 0 her tarafı 4’e bölelim. x 2x 1 0 x 2x 1 0 denkleminin köklerini bulalım. (x 1) 0 x 1 (çift katlı kök vardır.) x nin katsayısı da pozitif. İşaret tablosunu çizdikten sonra, en sağ bölge olacak şekilde başlarız. Çift katlı kök olduğu için işaret değiştirmeyiz. 0’dan küçük ve 0’a eşit olan yerler isteniyordu. Bölge olarak hiç bir bölge, çözüme dahil değil. Eşitlik olduğu için kök, çözüme dahil olur. Buna göre, Çözüm kümesi {1} dir. Cevap : E 3) 2 a ve b birer gerçel sayı olmak üzere, x 8x a 0 eşitsizliğinin çözüm kümesi R {b} olduğuna göre, a.b çarpımı kaçtır? A) 96 B) 64 C) 16 D) 48 E) 72 ÇÖZÜM: 2 2 2 b hariç tüm reel değerler için eşitsizlik sağlanıyormuş. O halde bu denklemin çift katlı bir kökü vardır, o da x b değeridir. Bunun için 0 olmalıdır. Not : ax bx c 0 denkleminde b 4ac dir. 8 4.( 1 2 2 2 ).a 0 64 4a 0 a 16 dır. x 8x 16 0 denkleminin kökünü bulalım. x 8x 16 0 (her taraf ile çarpıldı.) (x 4) 0 x 4 tür. Demek ki b 4 tür. Buna göre, a.b 16.4 64 tür. Cevap: B www.matematikkolay.net 4) 2 a bir gerçel sayı olmak üzere, ax 12x 3 0 eşitsizliğinin çözüm kümesi R olduğuna göre, a’nın değeri aşağıdakilerden hangisi olabilir? A) 14 B) 9 C) 10 D) 13 E) 15 ÇÖZÜM: 2 2 0 olursa denklemin kökü olmaz. x nin işareti ( ) pozitif olursa işaret tablosunda tüm ifade sürekli pozitif kalır ve bu şekilde eşitsizlik sürekli sağlanır. 0 12 4.a.3 0 144 12a 0 144 12a 12 a a 12 ol malıdır. Cevap : D 5) 2 (x 5x 4)(x 1) 0 eşitsizliğinin çözüm kümesi aşağıdakilerden hangisi￾dir? A) ( , 4) B) ( , 4) {1} C) (4, ) {1} D) ( , 1] E) ( , 4] {1} ÇÖZÜM: 2 ( 1)( 4) 2 Denklemin köklerini bulalım. (x 5x 4 )(x 1) 0 (x 1)(x 4)(x 1) 0 Kökler x 1 (çift katlı kök) ve x 4 tür. İşareti tespit edelim. (x 5x 4)(x 1) ( ).( ) olur. İşaret tablosunu çizelim. (En sağdan başlıyoruz ve çift katlı köklerde işaret değiştirmiyoruz.) Eşitlik olmadığı için kökler dahil değildir. Buna göre, çözüm kümesi ( , 4) {1} dir. Cevap: B 6) a, b, c, d ardışık çift sayılar ve a b c d olmak üzere, (x a)(x b)(x c)(x d) 0 eşitsizliğini sağlayan kaç tam sayı vardır? A) 1 B) 2 C) 3 D) 4 E) 5 ÇÖZÜM: Denklemin kökleri a, b, c ve d dir. İşareti tespit edelim. (x a)(x b)(x c)(x d) dır. Buna göre, tabloyu çizelim. Çözüm kümesi (a, b) (c, d) dir. Ardışık çift sayılar olduklarından a ile b arasında sadece 1 tam sayı vardır (Ör : 4 ile 6 arasında sadece 5 var dır.). Aynı şekilde c ile d arasında da sadece 1 tam sayı va r dır. Toplamda 2 tam sayı olur. Cevap: B 7) 4 (9 x )(x 2) 0 eşitsizliğinin çözüm kümesi aşağıdakilerden hangi￾dir? A) ( 2, 3) (3, ) B) ( 3, 2) C) ( 2, 3) (2, ) D) ( 3, 3) E) ( 2, 3) ( 3, ) www.matematikkolay.net ÇÖZÜM: 2 2 2 kök yok x 2 x 3 x 3 4 (3 x )(3 x )(x 2) 0 ( 3 x)( 3 x)(3 x )(x 2) 0 İşareti bulalım. (9 x )(x 2) dir. Çözüm kümesi ( 2, 3) ( 3, ) dur. Cevap: E 8) 2 2 x 8x 15 0 x 9 eşitsizliğinin çözüm kümesi aşağıdakilerden hangisi￾dir? A) {3} [5, ) B) [5, ) C) ( 3, 5] {3} D) ( , 3) (3, 5] E) ( 3, 3) ÇÖZÜM: 2 ( 5)( 3) x 5 x 3 2 x 3 x 3 Pay ve paydadaki ifadelerin köklerini bulalım. x 8x 15 0 (x 5)(x 3) 0 x 9 0 (x 3)(x 3) 0 x 3 kökü iki defa geçtiğinden çift katlı köktür. Paydayı 0 yapan x 3 ve x 3 değerl 2 2 eri, çözüme dahil edilmez. x 8x 15 İşareti tespit edelim. dır. x 9 Çözüm kümesi ( 3, 5] {3} tür. Cevap: C 9) 2 2 (x 3x 2)( x 3) 0 (x 2) (x 1) eşitsizliğini sağlayan tam sayıların toplamı kaçtır? A) 1 B) 2 C) 3 D) 4 E) 5 ÇÖZÜM: 2 ( 2)( 1) x 2 x 1 2 Pay ve paydadaki ifadelerin köklerini bulalım. x 3x 2 0 (x 2)(x 1) 0 x 3 0 x 3 tür. (x 2) 0 x 2 dir (2 defa). x 1 0 x 1 dir. x 2 kökü toplamda 3 defa geçtiği için tek kat Not : 2 2 lı köktür. (x 3x 2)( x 3) İşareti tespit edelim. dir. (x 2) (x 1) Paydayı 0 yapan değerleri çözüme eklemiyoruz. Not : Çözüm kümesi [ 3, 1) [1, 2) dir. Buna göre, 3, 2 ve 1 tam sayıları eşitsizliği sağlar. Toplamları da 4 tür. Cevap : D 10) 2 x 8 .(x 5) 0 (x 4) (x 1) eşitsizliğini sağlayan kaç farklı x tam sayısı vardır? A) 1 B) 2 C) 3 D) 4 E) 5 www.matematikkolay.net ÇÖZÜM: Mutlak değerli ifadeler negatif olamayacağı için eşitsizlik tablosunda bunların köklerine yer verme – yebiliriz (Yer verirsek çift katlı kök olarak gösterme￾liyiz ). Daha sonra kökün durumunu ayrıyeten in 2 celeriz. x 8 0 x 8 kökü eşitsizliği sağlar. Bu kökü işaret tablosunda göstermeyeceğiz ama çözüme dahil edeceğiz. x 5 0 x 5 (x 4) 0 x 4 (2 defa) x 1 0 x 1 dir. x 8 .(x İşareti tespit edelim. 2 5) dır. (x 4) (x 1) Çözüm kümesi (1, 5] { 8} dir. Tam sayı olarak 8, 2, 3, 4, 5 5 tanedir. Cevap : E

Yorum yapın